
Added Features/Improvements
•	 Source Control Management (SCM) Integration & Tooling

Integration with GIT and Perforce. Conveniently Check-in/out,
diff history within the AMI web based dashboard builder.

•	 Multi-file Linker
Dashboards can now be comprised of multiple files
meaning components can be logically separated for
independent management/version control.

•	 Abstraction
Functionality can be marked volatile and overridden in
another file, allowing for dashboard designers to abstract
out functionality for custom implementation

•	 Refactoring Tool
Components can safely be renamed and/or moved
between files. The tool automatically updates and moves
dependencies as necessary with naming conflict resolution.

•	 Dashboard File Stabilization
Changes to a dashboard result in minimum/localized
changes to the underlying file. Components can be set to
defaults to avoid noisy/unintended changes.

Benefits
•	 Team Collaboration

By logically dividing a dashboard across files, Teams can
simultaneously work on subcomponents of the dashboard.

•	 Reusable Components
Scripts, datamodels, widgets and entire dashboards can be
written once and then reused across dashboards.

•	 Dashboard Tracking, Versioning, Branching
As AMI files are managed by source control, they can be
used to label versions of a dashboard, compare versions
and manage branching.

•	 Merging Independent Projects
Existing dashboards can be incorporated into new
dashboards making it easy to build super-dashboards
cross-incorporating functionality.

•	 Enterprise Deployment Strategy
Treat AMI files just like any other resources that are
managed through deployment strategies, such as udeploy/
teamcity, etc.

•	 Dashboard Extension
Extend existing dashboards for regional/business line
specific usage without needing to maintain multiple near-
duplicate dashboards.

Full Backwards Compatibility
•	 File

Loads existing dashboards and automatically converts to
the new format. Note: files are still json with the same
general structure, just less clutter/redundancy.

•	 Usage
Users & dashboard developers can continue to develop/
maintain dashboards without change. Changes are
purely additive, existing functionality has not been
changed nor removed.

•	 Split Dashboards
Split existing dashboards into separate files for better
SCM management.

•	 Combine Dashboards
Utilize multiple existing dashboards to create a single
super-dashboard.

Source Control Management (SCM)
Release Notes
3Forge has introduced a new era for building large-scale next generation dashboards,
enabling maintenance in a controlled and distributed manner.

PRODUCT RELEASE NOTES :: MARCH 2020

Copyright 2020 3Forge, LLC. All rights reserved.

Key Concepts
•	 Dashboard cs Layout

Prior to SCM, a Dashboard was backed by a single layout
file, so the terms were interchangeable. Now, a Dashboard
can be an amalgamation of multiple Layout files so the
distinction matters:

»» Layout
An individual .ami file which contains a set of resource
definitions such as Panels, Datamodels, Relationships,
AmiScript, etc.

»» Dashboard (Root Layout)
The .ami file that is directly opened (ex: File -> Open
Absolute File) is considered the Dashboard, or more
specifically the Root Layout.

•	 Included Files
New to this release, a layout file can also include pointers
to other .ami Layout Files (Dashboard -> Include Files…).
This forms a Parent Layout/Child Layout Relationship.

•	 Hidden Panels
A layout file can now define panels that are not directly
referenced in the dashboard. If a layout includes a child
layout, all of the child layout’s panels are hidden by
default, in order to make a child layouts panel(s) visible
you need to specifically unhide it (Blank Window -> Green
Button -> Unhide Panel). In effect, this is how linking a
panel from one layout to another is achieved.

Getting Started
•	 Connecting to Source Control Management (SCM)

Navigate to Account -> Source Control Settings, select
the appropriate source control type and fill in your user
credentials. The base path tells AMI where it expects files to
reside which are managed under source control, including
sub directories. (files outside that directory will not have
source control functionality)

•	 Loading/Saving Dashboards in SCM
Traditionally, layouts could only be stored under “my layouts”
or “cloud”. Now there is an “Absolute” (File -> Open Absolute
File) option which allows you to load/save files anywhere on
the host. If you wish to use SCM to manage a layout file, it
should be located under the SCM base path (Account -> Source
Control Settings -> Base Path). Tip: To move a layout from my
layouts into SCM, simply load it (File -> My Layouts) and then
save it under said SCM base path (Save -> Absolute File as).

•	 Link multiple files to a dashboard
Open the project browser (Dashboard -> Include Files).

»» To add an existing file:
Right click on the <root> project -> Add Child Link from ->
Existing File -> select the file to add.

»» To add a new file:
Right click on the <root> project -> Add Child Link From ->
New File -> Enter the name of the new, blank file to create.

»» Notes:
˗˗ The alias defines how objects (panels, datamodels, etc.)

within this will be referenced within the main dashboard.

˗˗ Read-only: If selected then, you will not be able to save
changes made to the objects within the selected file

˗˗ Relative Path: If true, then the file will be referenced
using a path relative to the parent file; otherwise it will
be an absolute path. Relative is preferred for portability.

•	 Link to a panel from another file
Be sure the other file has been included (see Link Multiple
files to a dashboard). Create a blank Panel (Window -> New
Window), click the blank panel’s green button -> unhide
panel -> choose the panel to display

•	 Refactoring
To Move a panel (and it’s dependent objects) from one file
to another, click on the panels green button -> Move to
Different Layout -> select the layout to move the panel to.

•	 Using Source Control

»» Open the project Browser (Dashboard -> Include files), right
click -> Source Control -> Choose the appropriate action

»» To see most recent changes : File -> Diff against last save

Additions to Layout Editor
•	 Hiding Panels

Panel’s Green Button -> Hide Highlighted Panels

•	 Unhiding Panels
Windows -> New Window -> Green Button -> Unhide Panel
-> Choose panel to unhide (Note, any blank panel can be
used to link to a hidden panel)

•	 Tab Per Layout
Several Resource editor tools are now organized such that
there is one editor panel per layout.

»» Custom methods
Dashboard -> Custom methods…

»» Custom css
Dashboard -> Css…

»» Custom callbacks
Dashboard -> Callbacks…

•	 Owning Layout
All resources now have the concept of an owning layout:

»» Variables
Adding/editing global variables now allows you to choose
an owning layout (Dashboard -> Variables Table… ->
Right Click -> Add/Edit/Copy -> Owning Layout)

Copyright 2020 3Forge, LLC. All rights reserved.

»» Relationships
Ability to choose which file owns the relationship (Green
Button -> Add/Edit Relationship -> Owning Layout dropdown).

»» Datamodels
Dashboard -> Datamodeler… -> Right Click
on Datamodel -> Config Tab -> Owning Layout

»» Panels
Green Button -> Move To Different Layout File ->
Move To Layout

•	 Data Modeler
There is a list of checkboxes on the left to choose which layout’s
datamodels/panels to show (Dashboard -> Datamodeler)

•	 Relationships view
View for seeing all relationships (Dashboard -> View
Relationships). Note: This was added to allow access to
hidden relationships, which is a new concept. A relationship
is hidden if it’s source or target panel’s are hidden.

Advanced Concepts
•	 Layout File

Previously an .ami json file was considered a fully-contained
dashboard. Now, an .ami file should be thought of as a
collection of resources such as panels, datamodels, code, etc.
and can contain references to other .ami files. An individual
.ami file is referred to as a layout. There are a few key points:

»» Root Layout
This is the file that was directly loaded (ex: File ->
Open Absolute File) and is used as the “bootstrap” to
determine which windows are loaded and displayed
within the desktop.

»» Parent/Child Layout Relationship
A layout can include any number of child layouts
such that each included layout must have a uniquely
identifying alias. Note that the root Layout has no parent.

»» Layout Alias
Each layout (.ami file) within the dashboard is uniquely
identified using an alias (note that when you attach a
child layout, you are prompted to choose a unique alias).
This alias is used to reference objects within the layout.

»» Layout Nesting
Because layouts can recursively include other layouts,
it’s possible to have child layouts, grandchild layouts,
etc. In this case the alias is constructed by dot-
concatenation, ex: a.b.c

»» Complex Nesting
Circular references are not supported (ex; A.ami -> B.ami
-> A.ami). Diamond references are supported (A.ami ->
B.ami -> C.ami & A.ami -> D.ami -> C.ami).

»» Read-only/Locked
A layout file can be marked as read-only (Dashboard ->
Included Files -> right click -> Permissions). If the same
file is referenced multiple times (as with the diamond
pattern) then only one instance will be editable, and the
others will be locked.

•	 Alias-Dot-Name (ADN)
Previously, all panels where identified by a unique panel
ID. Now, uniqueness is enforced by combining a panel’s
owning layout’s fully qualified alias plus the Panel Id. Same
goes for uniquely identifying datamodels and relationships.

•	 Scoping
Parent layouts have access to the resources of child layouts
but child layouts do not have visibility to parent objects. This
is an important concept that enforces clean modularization.

•	 Custom AmiScript Methods & Variable Scoping
Because a dashboard can incorporate multiple layout files,
it’s possible for the same method definition to exist in
duplicate. Depending on where the AmiScript is getting
executed, the appropriate version of the method will
be run. For example, a parent layout could import two
child layouts, each with their own onButton() method.
Datamodels (or other resources) in child1 calling onButton()
will get child1’s method and Datamodels in child2 calling
onButton() will get child2’s version of the method. A subtle
detail, if the parent layout did not define its own onButton()
method and were to call onButton(), it will get the child
with the higher priorities version… (See Dashboard ->
Include Files -> right click -> Move Up Higher Priority/Move
Down Lower Priority) 

•	 AmiScript Layout Object
A new, important Layout class has been introduced,
which is used to represent each layout file loaded within
the dashboard. The layout variable is automatically
visible within AmiScript (like the session variable) and is
associated with the layout that the AmiScript is owned by.
This is important because it maintains relative consistency
when referencing other objects with AmiScript. Note, this
has replaced several methods from the session class and
when loading old layouts AMI will automatically convert the
code to use the layout object instead.

For example, let’s consider a layout B.ami that has two
datamodels dm1 and dm2:

B.ami
→ dm1
→ dm2

Inside dm1, if we want to get access to dm2 we would write:

//I’m inside dm1
Datamodel dm2=layout.getDatamodel(“dm2”);

Copyright 2020 3Forge, LLC. All rights reserved.

Say that we have another layout A.ami that includes B.ami
with the alias b and has its own datamodel dm0:

A.ami
→dm0
→b
 → dm1
 → dm2

First, keep in mind the above code will continue to work
because its inside dm1 which is owned by layout b so the
layout instant represents b. But now, let’s say we want to
get dm2 from code inside dm0. We could do either of these:

//I’m inside dm0, all three of these result
in same value
Datamodel dm2;
dm2=layout.getChild(“b”).
getDatamodel(“dm2”);
dm2=layout.getDatamodel(“b.dm2”);
dm2=layout.getDatamodel(“b.dm1”).
getLayout().getDatamodel(“dm2”);

The 3rd method is needlessly complex but highlights
the relative nature of layouts and resources… We’re
grabbing b’s dm1 datamodel. Then because dm1 and dm2
are in the same layout we can simply do getLayout().
getDatamodel(“dm2”) on dm1.

•	 Virtual Methods
With regards to scoping, it was mentioned that AmiScript within
a child layout does not have access to it’s parent’s AmiScript.
While generally true, if the layout were to explicitly define a
function as volatile and the parent layout were to also define
the same method, then the parent’s function will get called
instead. In the example below, if we were to call doit() in the
child layout, we would see the alerts parent1 and child2
because test1() was marked as volatile, but test2 was not:

»» Child Layout:
volatile String test1(){
	 session.alert(“child1”);
}
String test2(){
 session.alert(“child2”);
}
Object doit(){
	 test1();
	 test2();
}

»» Root Layout:
String test1(){
	 session.alert(“parent1”);
}
String test2(){
	 session.alert(“parent2”);
}

For more information, email info@3Forge.com.

